Transporter-mediated uptake of UDP-glucuronic acid by human liver microsomes: assay conditions, kinetics, and inhibition.

نویسندگان

  • Andrew Rowland
  • Peter I Mackenzie
  • John O Miners
چکیده

This study characterized the kinetics, variability, and factors that affect UDP-glucuronic acid (UDP-GlcUA) uptake by human liver microsomes (HLM). Biphasic kinetics were observed for UDP-GlcUA uptake by HLM. Uptake affinities (assessed as Kd) of the high- and low-affinity components differed by more than an order of magnitude (13 ± 6 vs. 374 ± 175 µM), but were comparable in terms of the maximal rate of uptake, with mean Vmax values differing less than 2.3-fold (56 ± 26 vs. 131 ± 35 pmol/min per mg). Variability in total intrinsic transporter activity (Uint) for microsomal UDP-GlcUA uptake across 12 livers was less than 4-fold. Experiments performed to optimize the conditions for microsomal UDP-GlcUA uptake demonstrated that both components were trans-stimulated by preloading (luminal addition) with an alternate UDP-sugar, and essentially abolished by the thiol-alkylating agent N-ethylmaleimide. Furthermore, interaction studies undertaken with a panel of drugs, alternate UDP-sugars, and glucuronide conjugates, at low (2.5 μM) and high (1000 μM) UDP-GlcUA concentrations, demonstrated that both components were inhibited to varying extents. Notably, the nucleoside analogs zidovudine, stavudine, lamivudine, and acyclovir inhibited both the high- and low- affinity components of microsomal UDP-GlcUA uptake by >45% at an inhibitor concentration of 100 μM. Taken together, these data demonstrate that human liver microsomal UDP-GlcUA uptake involves multiple protein-mediated components, and raises the possibility of impaired in vivo glucuronidation activity resulting from inhibition of UDP-GlcUA uptake into the endoplasmic reticulum membrane by drugs and other compounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dmd060509 147..153

This study characterized the kinetics, variability, and factors that affect UDP–glucuronic acid (UDP-GlcUA) uptake by human liver microsomes (HLM). Biphasic kinetics were observed for UDP-GlcUA uptake by HLM. Uptake affinities (assessed as Kd) of the highand low-affinity components differed by more than an order of magnitude (13 6 6 vs. 374 6 175 mM), but were comparable in terms of the maximal...

متن کامل

Molecular and functional characterization of microsomal UDP-glucuronic acid uptake by members of the nucleotide sugar transporter (NST) family.

Transport of the co-substrate UDPGA (UDP-glucuronic acid) into the lumen of the endoplasmic reticulum is an essential step in glucuronidation reactions due to the intraluminal location of the catalytic site of the enzyme UGT (UDP-glucuronosyltransferase). In the present study, we have characterized the function of several NSTs (nucleotide sugar transporters) and UGTs as potential carriers of UD...

متن کامل

Determination of drug glucuronidation and UDP-glucuronosyltransferase selectivity using a 96-well radiometric assay.

A rapid and sensitive radiometric assay for UDP-glucuronosyltransferase (UGT) is described. UGT substrates are incubated in 96-well plates with microsomes in the presence of [14C]UDP-glucuronic acid, and 14C-labeled glucuronidation products are separated from the unreacted nucleotide sugar by solid-phase extraction using 96-well extraction plates. The assay was validated with 15 structurally di...

متن کامل

Interaction of periodate-oxidized UDP-glucuronic acid with recombinant human liver UDP-glucuronosyltransferase 1A6.

Sodium periodate reacts with UDP-glucuronic acid (UDP-GlcUA) to generate a reactive derivative [periodate-oxidized UDP-GlcUA (o-UDP-GlcUA)]. The ability of this analog of UDP-GlcUA to inactivate and label the human recombinant UDP-glucuronosyltransferase (UGT) UGT1A6 via the UDP-GlcUA binding site was investigated. At an o-UDP-GlcUA concentration of 20 mM, the enzymatic activity of UGT1A6 was t...

متن کامل

Carrier-mediated transport of uridine diphosphoglucuronic acid across the endoplasmic reticulum membrane is a prerequisite for UDP-glucuronosyltransferase activity in rat liver.

UDP-glucuronosyltransferases (EC 2.4.1.17) is an isoenzyme family located primarily in the hepatic endoplasmic reticulum (ER) that displays latency of activity both in vitro and in vivo, as assessed respectively in microsomes and in isolated liver. The postulated luminal location of the active site of UDP-glucuronosyltransferases (UGTs) creates a permeability barrier to aglycone and UDP-GlcA ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 43 1  شماره 

صفحات  -

تاریخ انتشار 2015